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The existence of long-range order is proved under certain conditions for the 
antiferromagnetic quantum spin system with anisotropic interactions 
(XXZ model) on the simple cubic or the square lattice. In three dimensions (the 
simple cubic lattice), finite long-range order exists at sufficiently low tem- 
peratures for any anisotropy A (~>0) if S~> l, and for 0 ~ A  <0.29 (XY-like) or 
A > 1.19 (Ising-like) if S =  1/2. In two dimensions (the square lattice), ground- 
state long-range order exists under the following conditions: for any anisotropy 
(A ~> 0) if S/> 3/2; 0 ~< A < 0.032 (XY-like) or 0.67 < A < 1.34 (almost isotropic) 
or A > 1.80 (Ising-like) if S = 1; A > 1.93 (Ising-like) if S =  1/2. We conjecture 
that the two-dimensional spin-l/2 X Y  model (A =0)  has finite ground-state 
long-range order. Numerical evidence supporting this conjecture is given. 
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1. INTRODUCTION 

The existence of long-range order in quantum spin systems has been a 
challenging problem ever since the discovery of exchange interaction by 
Heisenberg. Recent resurgence of interest in this old problem is partly due 
to the possible relation of magnetic properties of certain oxide compounds 
to the basic mechanism of high-temperature superconductivity/1) Let us 
recall what has been established rigorously on the conditions for the 
existence of long-range order in quantum spin systems in three and lower 
dimensions. On the simple cubic lattice, the X Y  model with S~> 1/2 has 
finite long-range order at low temperatures. (2'3) The same is true for the 
antiferromagnetic Heisenberg model with S~> 1 on the simple cubic 
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lattice. (2) In one and two dimensions, no long-range magnetic order is 
present at finite temperatures as long as the exchange interaction is 
isotropic or XY-like. (4) The Ising-like system has finite long-range order at 
low temperatures even in two dimensions. (5) In the ground state of the 
antiferromagnetic Heisenberg model on the square lattice, Neves and 
Perez (6) proved finiteness of long-range order for S>~ 1. 3 The same techni- 
que was applied to the two-dimensional hexagonal lattice to show the 
existence of antiferromagnetic long-range order for S~>3/2. (7) Kubo (3) 
analyzed the X Y  model on the square lattice to show finiteness of ground- 
state long-range order for S >~ 3/2. 

The purpose of the present paper is to generalize the methods 
developed in the above papers to include the exchange anisotropy A. Let 
us summarize the results here for convenience. The model system is defined 
by the Hamiltonian 

x x y y z z (1) 

where a denotes a lattice site on a finite-size simple cubic (or a square) 
lattice with periodic boundary conditions. The second summation runs 
over two (three) vectors to the nearest neighbor sites along the x, y (and 
z) axes on the square (simple cubic) lattice. Positivity of A corresponds to 
antiferromagnetic interactions. For  this system we prove the following: 

(i) In three dimensions the system at sufficiently low temperatures 
has finite long-range order in the thermodynamic limit if S~> 1 (A is 
arbitrary if nonnegative). The spin-l/2 system has long-range order if 
0 ~ A  <0.29 or A > 1.19. 

(ii) In the ground state of the two-dimensional system, a sufficient 
condition for finiteness of long-range order is S~> 3/2 (arbitrary A >~ 0). If 
S = 1, A should satisfy 0 ~< A < 0.032 or 0.67 < A < 1.34 or A > 1.80 in order 
that we can prove the existence of long-range order. The spin-l/2 system 
has long-range order in the ground state if A > 1.93. 

We further conjecture that the two-dimensional spin-l/2 X Y  model 
(A = 0) has finite long-range order in its ground state. Although we failed 
to prove this conjecture, strong numerical evidence is given to support this 
claim. No conclusive result has been reached on the spin-l/2 isotropic 
Heisenberg model CA = 1) in two dimensions. 

3 As pointed out by Affleck et aL, ~7~ Eq. (9) of ref. 6 contains a trivial error in the factor on 
the left-hand side. As a consequence, Neves and Perez actually proved the existence of long- 
range order for S >~ 1, not only for S >~ 3/2 as they mentioned. 
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The main part of the paper is the next section, where the general 
strategy is described and the S~> 1 case is treated explicitly. The spin-l/2 
problem has special characteristics and is discussed in Section 3. Final 
remarks are given in the last section. 

2. THE CASE OF S~>l 

2.1. Def in i t ion and Nota t ion  

We first fix the notation. The Fourier transform of the spin operator 
So is defined by 

1 
e - i " ' " S ,  (2) 

where A is the set of lattice sites, I A[ denotes the total number of sites, and 
p is chosen such that periodic boundary conditions are satisfied. Let <.-. ) 
represent the thermal average with respect to the Hamiltonian (1). The 
symbol (A, B) denotes the Duhamel two-point function 

(A, B)= Z -I I ~ T r ( e - ~ A e - ( L -  x)~HB) dx (3) 
J0 

where Z is the partition function and /~ is the inverse temperature. The 
commutator of A and B is written as usual [A, B]. 

The existence of antiferromagnetic long-range order is defined by 

(4) 

for j = x, y, or z at sufficiently low temperatures in three dimensions, or 

1 / ~ ( j ) ~ ( j )  \ (m(J,)2= im jLm (5) 

in two dimensions. The wave number p in (4) and (5) is chosen to 
represent staggered magnetization. 

2.2. Basic Theorems 

The following are the basic theorems describing sufficient conditions 
for the existence of finite long-range order in the model (1). 
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T h e o r e m  1. (Dyson, Lieb, and-Simon,  (2) referred to as DLS). 
Suppose that there exist functions D (s), B~ i), and C~ j) satisfying 

(i) (J) (s) ( S. S.  } >~ D(J)(fl) 

(ii) ( g ( j l , ~ ) ~ < / ?  !B~S), p,r forsomei(=x,y,  orz) 

(iii) Cp(J)=_ <[S(j), [fill, S~)p]]> <~flC~ ) 

where j =  x, y, or z. Then the long-range order (m(J)) 2 is finite at sufficiently 
low temperatures if 

:> 1 ( B p  C p  ) (iv) 2D(S)(m) (2~r) v~dpo (J) (j) 1/2 

and 

(v) I dp < 

where v represents the lattice dimensionality and the integral is over 
--g<~pj<~zC for allj.  

Romork I. Condition (v) is not satisfied in two dimensions, as will 
be shown later. Thus, this theorem is useful only in three dimensions. 

Remark 2. In condition (ii), we can choose B~ j) as temperature inde- 
pendent, as seen in Theorem 5 below. In contrast, the expectation value of 
the double commutator C~ s) in (iii) should have temperature dependence. 
In actual applications, however, we do not investigate this temperature 
dependence explicitly because satisfaction of condition (iv), both sides of 
which are evaluated at T =  0, guarantees the existence of long-range order 
at sufficiently low (but nonvanishing) temperatures. For this reason, the 
symbol ( - - .  } should be regarded as the expectation value by the ground- 
state wave function hereafter. See DLS for details. 

The above theorem holds also if one sums various quantities over j. 

Theorem 2. (DLS). The long-range order 

m 2= ~ (m(+)) 2 (6) 
j =  x, y, z 

is finite if the following five relations are satisfied. 

(i) ~ (S(j)S~ )> >~y'D(J)(fl)-D 
J J 

(ii) 2 (S~), S(J)p) ~< f l - '  Z R(~)= t~-'R - - p  - -  ~,~ - - p ,  

J J 

pir ( i=x,y ,  orz) 
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(iii) Z c~J)<~2fC(pJ)==-flCp 
J J 

(iv) 2 D > ~  f dp (BpC,) m 

(v) fdpB.<~ (7) 

The ground-state long-range order in two dimensions has been 
investigated by Neves and Perez. (6) 

Theorem 3. (Neves and Perez). Suppose that conditions (i)-(iii) of 
Theorem 1 are satisfied. Then the ground-state long-range order is finite if 
condition (iv) is also satisfied. 

Remark. Neves and Perez have shown that the condition (v) of 
Theorem 1, which does not hold in two dimensions, is not required to 
prove the existence of ground-state long-range order if one takes the low- 
temperature limit fl ~ ~ first and then the thermodynamic limit [A[ ~ 
[see their Eq. (5) and the argument following it]. If the order of the two 
limits is reversed, the theorem of Mermin and Wagner (4) applies (as long 
as A ~< 1) and no long-range order exists. 

Theorem 3 holds also if one sums various quantities over j. 

Theorem 4. (Neves and Perez). The long-range order 

rn z=  ~ (m(;)) z 
j = x ,  y ,z  

is finite in the ground state if conditions (i)-(iv) of Theorem 2 are satisfied. 

Theorem 5. 
Theorem 1 with 

(DLS). The spin system (1) satisfies condition (ii) of 

B~J)= 1/(2E;) (j  = x or y) 

8(;)= 1/(2~E;) 
(8) 
(9) 

where 

E ; = ~  (1 +cos  p ' 6 )  (10) 

Explicitly, in two dimensions, 

t Ep = 2 + cos Pl + cos P2 
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and in three dimensions 

! 

E~ = 3 + cos Pl + cos P2 + cos P3 

Remark I. The above result is DLS's Theorem 6.1 slightly modified 
to accommodate anisotropy A. Lemma 6.1 of DLS remains unchanged if 
A # 1, but the derivation of the upper bound on the Duhamel two-point 
function from Lemma6.1 needs modification. See their proofs of 
Theorems 4.1 and 4.2. 

Remark 2. Condition (v) of Theorem l and condition(v) of 
Theorem 2 are satisfied in three dimensions with B~ j) given above. In two 
dimensions the integral diverges. Consequently, only Theorems 3 and 4 
give useful criteria for finiteness of long-range order in two dimensions. 

Propos i t ion  1. (DLS). c~ J) is nonnegative for any p. 

ProoL The double commutator is equal to a Duhamel two-point 
function 

as is apparent from DLS's Eq. (27). The right-hand side of the above 
equation is nonnegative according to DLS's Eq. (22). | 

Proposition 2. The nearest neighbor correlation functions satisfy 

- < z z > > ~ - < x x > ~ O  if A>~I 

and 

-<xx>~l<zz>l if O ~ A ( 1  

where 

< x x >  - 

and 

ProoL 

where 

<zz> - 

It is straightforward to evaluate the double commutator 

C(p z) = ~ -- 1c(Z) : - 4 E ,  < xx ) 

E p = ~  (1--cos p '~)  

(11) 
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If Proposition 1 is applied to (11 ) at pj = rt (all j), it readily follows that 

- ( x x )  >~0 (12) 

Next we apply the same proposition to 

C~}= fl-~c(rX~= - 2  ~ (1 - A cos p. ~ ) ( x x )  - 2 Z (A - cos p -~) (zz  > 

at pj = 0 (all j) and pj = r~ (all j), to derive the following relations: 

(1 - 3 ) (  < z z ) -  <xx>) >/0 

- ( 1  + A)((zz) + (xx))>10 

Equations (12) and (14) are sufficient to prove Proposition 2. | 

(13) 

(14a) 

(14b) 

where 

vK~ = (2n) -v f dp (Ep/E'p) m 

ProoL As mentioned in Remark 2 of Theorem 5, condition (v) of 
Theorem 1 is satisfied in three dimensions. Condition (ii) is satisfied accor- 
ding to Theorem 5. Hence we check conditions (i), (iii), and (iv). The 
double commutator C~ ~) has already been given in (11). Condition (iv) is 
then written as 

> 1 d - J ( lS)  2D(~)(~176 (-~)~f P[ 4Ep(xX)]'/2 

To evaluate D{Z)(oo), a lower bound on ((SZ) 2) in the low-temperature 
limit, we first note that 

z z 2 < (SZ)2>  2 =  <(SZ)2><(SZ~+6)2 > ~ < S . S a + f ~ >  = <zz> 2 

21/2AS> vKv(A + 2) 1/2 

2.3. General Criteria for Finiteness of Long-Range Order 

First, we apply the above theorems to the Ising-like region. 

Proposition 3. The long-range order (m~Z)) 2 is finite (at sufficiently 
low temperatures in three dimensions and at T = 0  in two dimensions) if 
A ~> 1 and 
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from translational invariance and the Schwartz inequality. By taking 
account of the fact that - ( z z )  is not negative according to Proposition 2, 
we write the above relation as 

<(S~)2> >/ -<zz> (16) 

The low-temperature limit of the right-hand side of (16) is chosen as 
D(~)(~). Thus, (15) is satisfied if 

( -  ( x x ) )  1/2 
- ( z z )  > (2A)1/2 vK~ (17) 

Using Proposition 2, we replace - ( x x )  on the right-hand side by - ( z z )  
to derive the following sufficient condition: 

( - -  ( Z Z )  )1/2 > vK~/(2A ),/2 (18) 

The left-hand side of (18) is further bounded as 

LjS 2 
- ( z z )  >~ A + 2 (19) 

To prove (19), we apply the variational principle to the Hamiltonian (1) 
with the variational wave function ~b satisfying S~b -- S~b if a is on one of 
the sublattices and S~b = -S~b if a is on the other sublattice: 

(~b[ H [~b)= -v]A[  AS2>~v [ A [ ( 2 ( x x ) + A ( z z ) )  (20) 

where the expectation values on right-hand side are evaluated by the true 
ground-state wave function. Equation (20) and Proposition 2 lead to the 
following inequality: 

- ( 2 + A ) < z z >  >~ - (2<xx> +A<zz>)>/AS 2 

which is (19). Equations (18) and (19) are sufficient to prove Proposi- 
tion 3. | 

Explicitly, 2K2=1.39 and 3K3=1.157 have been obtained from 
numerical integration. Proposition 3 then states that long-range order 
exists under the following conditions. 

(i) v =  3: 

(ii) v=2:  

S ~> 3/2 and A t> l, or S = l a n d A > l . 5 4  

or S = 1/2 and A > 4.01 

S~>2andA >~ 1, or S = 3 / 2 a n d A > l . 1 7  

o r S = l a n d A > l . 9 5 ,  or S = 1 / 2  and A > 5.32 

Much better bounds for the spin-l/2 case will be given in Section 3. 
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The next problem is the XY-like region. 

P r o p o s i t i o n  4. The long-range order (m(X)) z is finite (at suf- 
ficiently low temperatures in three dimensions and at T =  0 in two dimen- 
sions) if 0 ~< A ~< 1 and 

2 S >  vK~[(2 + A)(1 + A)] 1/2 

ProoL Condition (iv) of Theorem 1 is written explicitly as, using C(p x) 
given in (13 ), 

2D(X)(oe) > [ -  (xx)  -A(zz)]l/2f~(rl) (21) 

where 

* (22) 
<zz> + 3<xx) 

r l -~- 
<xx> +3<zz> 

To evaluatefv(r~), we first point out that r I lies in the interval - 1  ~< rl < 1, 
which is a direct consequence of Proposition 2. Since fv(x) is a monotone 
increasing function of x if x ~< 1, as shown in Appendix A, one may replace 
f~(rl) by fv(I)=vKv in (21). To estimate D(X~(ov), a lower bound on 
((S,~) 2) in the low-temperature limit, we replace ((S,~) 2) by - ( x x )  for 
the same reason as in the derivation of (16). The correlation - (zz) on the 
right-hand side of (21 ) may be replaced by - ( x x )  according to Proposi- 
tion 2. In this way we obtain a sufficient condition for the existence of finite 
long-range order as 

2 ( -  (xx))t/2> (1 + A) 1/2 vKv (23) 

The variational principle as used in the proof of Proposition 3 (choosing 
the N6el state in the x direction as ~b) leads to 

S 2 
- ( x x ) / >  2 +---A (24) 

Equations (23) and (24) lead to Proposition 4. | 

From Proposition 4, we have the following result. Sufficient conditions 
for finiteness of long-range order are 

(i) v=3 :  S>~3/2andO<~A<~l, or S = I  and 0. .<3<0.299 

(ii) v = 2 :  S~>2and0..<A..<l,  or S=3/2and0<~A<0.72, 
or S = l a n d 0 ~ < A < 0 . 0 2 3  
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If S = 1/2, there is no region of A satisfying the condition of Proposition 4 
in three dimensions as well as in two dimensions. 

It is advantageous to use Theorems 2 and 4 to treat the almost 
isotropic region A ~ 1. 

P r o p o s i t i o n  5. The long-range order rn 2 is finite (at sufficiently 
low temperatures in three dimensions and at T =  0 in two dimensions) if 

1 "~ 1/2 
S ( S q . - 1 ) > p  1/2 lq--~--~j vKv 

where p = - 2  ( xx  ) - A ( zz ). 

Proof. 
is written as 

2 S ( S + 1 ) > 2 p  1/2 1+~--~ fv(r2) 

where r 2 = - [ ( z z ) + ( l + A ) ( x x ) ] / p .  Note here 

(25) 

It is straightforward to verify that condition (iv) of Theorem 2 

that 

(26) 

rz satisfies 
- 1 ~< r 2 ~ 1 (as shown by applying Proposition 1 to C(p x) + cp (y) +cp(~) in the 
same way as in the proof of Proposition 4) and that fv(x)  is an increasing 
function of x( ~< 1). Therefore fv(r2) in (26) may be replaced by fv(1 ) = vKv. 
This completes the proof. | 

Remark. The quantity p(l + 1/2A) in (25) is a monotone decreasing 
function of A if 0~<A < 1 and is monotone increasing if A >  1 (see 
Appendix B). Therefore if (25) for a fixed S is satisfied in some interval 
Acl < A < Ac2, this interval should include the isotropic case A = 1. 

Explicit upper bounds for p can be evaluated by diagonalizing finite- 
size clusters following Anderson (25) (see also Appendix C of DLS): Numeri- 
cal diagonalization of the operator 

~I c = y~ J~(S~S;, + S~Sf  + AS~S;) 
(ij> 

on finite-size clusters yields a bound on the lowest eigenvalue of the total 
Hamiltonian (1) which is proportional to p. The result is as follows. If v--2  
and S = 1, the inequality (25) is satisfied when 0.67 < A < 1.34, as displayed 
in Fig. la, from numerical diagonalization of the finite-size system in 
Fig. lb (a 9-spin cluster). [Note that we have chosen Ji j= 1/2 on the 
boundary bonds in Fig. lb and Jg = 1 in interior. With this choice, the total 
Hamiltonian (1) of the original system is written as a sum of the cluster 
Hamiltonian Hc with the center site 0 (Fig. lb) placed on every four sites 
(so that the boundary bond of a cluster is shared with the neighboring 
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0.2 

% ~ O.C 

I 

-~ I % 

y=2 
5"=I 

0,67 , f ~ .  34 f zl 
> 

(a) 

() -() 

( )0 < 

( ( 

(b) 

Fig. 1. (a) Difference of the left-hand side and the right-hand side of (25) (with p replaced 
by an upper bound as described in the text) in the case of v = 2 and S =  1. The inequality (25) 
is satisfied in the range 0.67 < A < 1.34. (b) The lowest eigenvalue of this 9-spin cluster has 
yielded a bound on p, from which Fig. la has been drawn. 

cluster). Thus, from the variational principle, the lowest eigenvalue E 0 of H 
is bounded from below by the lowest eigenvalue of Hc multiplied by IA I/4. 
This fact, together with the relation - v  ]AI p = go, has been used to derive 
the above result.] If v = 2 and S = 3/2, our sufficient condition for the 
existence of long-range order is 0.26 < A < 2.66 (Fig. 2a), which was derived 
by diagonalizing the 5-spin cluster of Fig. 2b. In three dimensions, we have 
found the condition for S =  1 as 0.294 < A < 2.40 (Fig. 3a) by numerical 
diagonalization of the 7-spin cluster in Fig. 3b. 

It is convenient to summarize the results here from three different 
regions (0 < A < 1, A ~ 1, and 3 > 1). In three dimensions, the long-range 
order is finite at low temperatures if S 7> 1 for any A >~ 0. In two dimen- 
sions, the ground state has finite long-range order if S >~ 3/2 for any A >/0; 
if S = 1 in two dimensions, the condition is 0 ~< A < 0.023 or 0.67 < A < 1.34 
or A > 1.95. 
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1.oL 

?o.o  

(a) 

( 
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( 

(b) 

(a) The same diagram as Fig. la in the case of v = 2, S = 3/2. (b) The 5-spin cluster 
to calculate a bound on p for v = 2, S = 3/2. 

2.4. Improvements  of the Estimates for v = 2 ,  S = 1  

I t  is possible slightly to improve  the bounds  0~<A <0.023 and 
A > 1.95 derived in the case of v = 2 and S = 1. We first discuss the Ising- 
like region (A/> 1). In the sufficient condi t ion (17) for finiteness of long- 
range order,  we replace - ( x x )  by the following m a x i m u m  possible value: 

- -  ( x x )  <~ - �89  S. + n) ~ -~ (27) 

where the first inequali ty is a consequence of Propos i t ion  2, while the 
second comes  f rom the bound  - ( S , - S , + n ) < < . S ( S +  1/2v). (25) The  left- 
hand  side of (17) m a y  be replaced by A/(A + 2) f rom (19). Thus  the condi- 
t ion reduces to 

A { 5 ~1/2 1.39 (28) 
a + 2 > ~ ~ )  (2A)1/= 
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~ 0.~ 

k~.> O.C 

I 

~"  -0.5 
r 
% 

~=3 
5'=I 

~ .40 -.<, 

(a) 

? 

7 -O 

Z3 
> 

Fig. 3. 

(b)  

(a) The same diagram as Fig. la in the case of v = 3, S = 1. (b) The 7-spin cluster to 
derive a bound on p for v = 3, S = 1. 

where we have used vKv = 1.39 for v = 2. E q u a t i o n  (28) is satisfied in the 
range A > 1.80. This is a small  i m p r o v e m e n t  over  the previous  result,  
A > 1.95. 

Next  we t reat  the JfY-like region 0~<A ~< 1. In cond i t ion  (21) we 
replace r 1 by its m a x i m u m  possible  value 

17A + 10 
rmax = 5A 2 + 10A + 12 

which is der ived by no t ing  tha t  - ( x x )  >~ 1/(2 + A) [ c ond i t i on  (24)]  and  
- (zz)  ~ 5/12 [as  shown in a s imilar  way as in the de r iva t ion  of  (27)] .  We  
fur ther  replace - ( z z )  in the square  roo t  of  (21) by its m a x i m u m  value 
5/12. Then  (21) is r educed  to 

- 2 ( x x )  
( -  ( x x )  + 5/12A) 1/2 > fv(rmax) (29) 

822/55/1-2-18 
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using <(S~) 2> >~ -<xx>. As the left-hand side of the above inequality is 
monotone increasing in - < x x > ,  it is possible to replace - < x x >  by the 
minimum value 1/(2+A).  In this way, both sides of (29) are written as 
explicit functions of A. Numerical evaluation of the integral function fv 
shows that (29) is satisfied if A ~< 0.032. 

We summarize the results of this and the preceding subsections as a 
theorem. 

T h e o r e m  7. On the simple cubic lattice, the system (1) has finite 
long-range order at low temperatures if S>~ 1 and A >/0. On the square 
lattice, the ground-state long-range order is finite if S~> 3/2 and A >~0; 
when S =  1 in two dimensions, A should satisfy 0 ~< A < 0.032 or 0.67 < 
A < 1.34 or A > 1.80. 

3. THE S P I N - l / 2  PROBLEM 

3.1. Rigorous Results 

A special advantage of the spin-l/2 systems is that ((S~) 2> and 
<(S~) 2 > can be calculated explicitly as 1/4. In the Ising-like region, the 
condition (15) is thus written as 

1 ( -  <xx>) 1/2 
~ >  (2A)1/2 vKv (30) 

The correlation function - <xx > may be replaced by its maximum possible 
value S(S + 1/2v)/3 for the same reason as in Section 2.4. Therefore, (30) is 
satisfied for A > 1.19 if v = 3 and A > 1.93 if v = 2. 

In the XY-like region, the criterion (21) is rewritten as 

1 ( 1 + 3 )  1/2 
4 > 2 (-<xx>)l/2vK" (31) 

for the same reasons as in the proof of Proposition 4. We now replace 
-<xx> in (31) by its maximum possible value 1/4x/3,  which was 
derived by DLS in their Appendix C. [Note that the bound - < x x >  <, 
S(S+ 1/2v)/3 (which is smaller than 1/4 ,,/3 if S =  1/2 and v = 2), valid in 
the Ising-like region, is not applicable if A ~> 1.] Then (31) is satisfied for 
0 ~<A <0.29 if v = 3, and no positive A satisfies (31) if v = 2. These results 
are summarized as follows. 

T h e o r e m  8. The system (1) with S =  1/2 has long-range order at 
sufficiently low temperatures in three dimensions if 0 ~ A < 0.29 or A > 1.19. 
In the ground state of the two-dimensional model, long-range order exists 
if A > 1.93. 
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3.2. Conjecture 

In consideration of recent activities in the investigation of the ground- 
state properties of the two-dimensional systems, (7 24) it should be of great 
interest to discuss the case v = 2 and S = 1/2 with 0 ~ A ~< 1 in more detail. 

As for the antiferromagnetic Heisenberg model (A = 1), the present 
approach is totally inconclusive: The sufficient condition (26) is hardly 
satisfied even if the best numerical estimates of the correlation functions of 
the infinite-size system ('~ are used in (26). 

In contrast, condition (21) applied to the YY model (d = 0) is satisfied 
if one uses the estimates of Oitmaa and Betts(l~ 

<xx> = -1.08/8, (zz> = -0.038 (32) 

If S = 1/2, condition (21) for A = 0 reduces to 

1 > ( _ ( x x ) ) , / 2  f 2 ( ( z z ) / ( x x ) )  (33) 

If one insertes (32) into (33), numerical evaluation of the integral function 
f2 yields 0.487 as the right-hand side of (33). Therefore, the inequality is 
satisfied, implying finiteness of long-range order. The only problem is that 
the values (32) are not exact! 

To check more precisely if the condition (33) is possibly satisfied, we 
calculated numerically the ground-state nearest-neighbor correlation func- 
tions on the finite-size square lattices with periodic boundary conditions of 
Oitmaa-Betts (1~ type. The lattice size ranges from IAI = 8 to IAI = 20. The 
results are listed in Table I. We rewrite (33) as 

�89 > g ( - 2 ( x x ) ,  - ( z z ) )  (34) 

where 

/))= 1 f d~ (U-- V COS Pl -- V C~OS---P2~ 1/2 g(u, (35) 
(2re) 2 ~ ~ cos p,  + cos P2 / 

Table I. Nearest Neighbor Correlation Functions 
of the Spin- l /2  XY Model on the Finite-Size Square 

Latt ices o f  O i t m a a - B e t t s  Type ~m~ 

IAI - 4 ( S ~ S ~ + a )  - 4 ( S ~ S ~ + a )  

8 0.586302 0.215909 
10 0.576083 0.201172 
16 0.562486 0.182339 
18 0.559552 0.177784 
20 0.558057 0.175975 
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The expectation values in (34) should be taken by the ground-state wave 
function in the infinite-size limit eAt -~ oe. If one nevertheless replaces those 
correlation functions by the finite-size data in Table I, (34) is satisfied for 
IA[>~16 (g=0.512, 0.506, 0.499, 0.497, 0.497 for lAB=8, 10, 16, 18, 20, 
respectively). Now we notice in Table I that the correlations - < x x >  and 
-<zz > monotonically decrease as ]A] increases. Since the function g(u, v) 
is monotone increasing both in u (as is verified from differentiation by u) 
and in v (as is checked by the same calculations as in Appendix A) in the 
parameter region of interest (u~>2v), the infinite-size correlation would 
satisfy (34). Therefore we arrive at the following conjecture. 

Conjecture 1. The spin-l/2 X Y  model has finite ground-state 
long-range order on the square lattice. 

Remark 1. As is clear from the above argument, this conjecture 
would be proved if one could show 

- <xx>o~ <~ - < x x > l ~  I 

- <zz>~ <~ -<zz>i~ i 

where oe and ]Am denote the system size at which the expectation value is 
taken. Note that the finite-size systems on the right-hand side of the above 
equations should have periodic boundary conditions. Otherwise the 
inequality may be reversed. 

Remark 2. Oitmaa and Betts (1~ also predict finite long-range order 
from their finite-size data. The main advantage of the present approach 
over that of Oitmaa and Betts is that the existence of long-range order can 
be discussed only in terms of short-range correlations. Since short-range 
correlation functions are much less affected by finite-size effects than are 
long-range correlations, the reliability of the present method would exceed 
that of a simple extrapolation of finite-size long-range correlation data to 
IA[ -* ~ ,  as employed by Oitmaa and Betts (1~ and followers. (11-15) 

4. FINAL REMARKS 

If the spin is larger than 1/2 (S= 1, 3/2,...), the existence of long-range 
order has been established for almost all values of positive A in two and 
three dimensions. The most interesting case of S = 1/2 and 0 ~< 3 ~< 1 in two 
dimensions remains unsettled. While we conjecture the existence of finite 
long-range order in the spin-l/2 X Y  model on the square lattice in agree- 
ment with several authors, (8 10,16,17,19 23) finite-lattice calculations on the 
ferromagnetic X Y  model on the triangular lattice indicate vanishing long- 
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range order in the infinite-size limit. (11'~5) Since the triangular lattice has 
more interacting bonds per site than the square lattice, the ordering is 
naively expected to be stronger on the triangular lattice than on the square 
lattice as long as the interactions are ferromagnetic (i.e., no frustration is 
present). Thus, we are in an apparently conflicting situation; finiteness of 
long-range order is concluded from the present (and other) methods 
whereas vanishing of the same quantity is suggested from direct extrapola- 
tion of finite-size data of long-range correlations. In consideration of 
Remark 2 of Conjecture 1, the present approach seems to be more reliable 
than the direct extrapolation method of finite-size data. Rigorous proof of 
the property of the correlation functions mentioned in Remark 1 of Conjec- 
ture 1 is a waited. 

We have discussed the existence of long-range order defined in (4) and 
(5). The existence of a phase transition is not immediately proved even if 
(4) or (5) is established. Fortunately, as discussed by DLS, the following 
nonclustering property of the infinite-volume .state can be proved under the 
same ,conditions of the theorems in the text: 

lira ]A']-I E ] r  \ 

This relation implies the existence of multiple phases and therefore of a 
phase transition. See DLS for details. 

N O T E  A D D E D  

After submission of this paper, new developments have been observed 
on the present and related problems. Kennedy, Lieb, and Shastry (KLS) (28) 
generalized the method of DLS to prove the existence of long-range order 
in the three-dimensional spin-l/2 Heisenberg antiferromagnet with 
couplings anisotropic in lattice space. They also presented new sufficient 
conditions for the existence of long-range order. KLS proceeded to prove 
the existence of long-range order in the X Y  model in two and larger dimen- 
sions. (29) Kubo and Kishi (3~ proved, independently of the second paper of 
KLS, the existence of long-range order for all S ~> 1/2 and A ~> 0 in three 
dimensions and for S~> 1/2 and zl ~>0 excluding 0.13 <A < 1.78 when 
S =  1/2 in two dimensions. Ozeki, Nishimori, and Tomita (ONT) (31) 
refined the techniques to prove the existence of long-range order in two 
dimensions excluding the range 0.20 <zl < 1.72 when S =  1/2. The two- 
dimensional hexagonal lattice has also been treated by ONT to improve 
the result of Affleck et aL (7) The range of exclusion cited above in the case 
of S = 1/2 has been replaced by 0.20 < 3 < 1.67 in the paper of Nishimori 
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and Ozeki. (32) They also conjectured that the range would become as small 
as 0.59 < A < 1.10 if one assumes monotonicity of nearest neighbor correla- 
tions as functions of the system size. 

APPENDIXA.  MONOTONICITYOF f,(x) 

We prove that f v ( x )  , t  0 if x ~ 1. Differentiation of the definition (22) 
yields 

where 

f ' ( x )  = - - - -  
1 f h(p) 

2(2rc) v j dp { [v + h(p)] [v - xh(p)] }1/2 

h(p) = ~ cos p" 
6 

Since the range of integration.is -rc ~< pj ~< ~ and the integrand is periodic 
with period 2re, one may change the variables from pj to rc -  pj. Then h 
changes the sign, and therefore the sign off'v(x) is equal to that of 

- h  [(v+h)(v_xh)]l/2 [(v_h)(v+xh)]l/2 (A.1) 

The sign of the quantity in the outer brackets of (A.1) is equal to that of 
- h  if x ~< 1, since 

(v - h )(v + x h  ) - (v + h )(v - x h  ) = 2 v h ( x  - 1 ) 

Hence (A.1) is not negative. This completes the proof. 

APPENDIX B. DERIVATIVE OF p ( 1 + 1 / 2 A )  

To investigate monotonicity of F ( A )  =- p(1 + 1 /2A) ,  we first note that p 
is the ground-state energy of the model (1) divided by - v  IAI. Therefore, 
using the first-order perturbation theory, 

OA v I/I ~ = - ( z z )  (B.1) 

where the expectation value is taken by the ground-state wave function. It 
is thus straightforward to show that 

~F ( x x )  
6-5 = ~2 (zz)  (B.2) 
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Proposit ion 2 and (B.2) are sufficient to prove ~F/#zl < 0 when 0 ~<A < 1 
and #F/~A > 0 for A > 1. 

If the system size is finite, the derivative Op/~A is not necessarily con- 
tinuous at /I = 1, as seen in Figs. la, 2a, and 3a. This fact comes from the 
degeneracy of the ground state at A -- 1 for a system with the number of 
sites on one of the sublattices unequal to that on the other. ~26'27) Continuity 
of Op/Ozl = - ( z z >  is expected to be recovered in the thermodynamic limit. 
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